Search results for " radiomics"
showing 10 items of 18 documents
A Predictive System to Classify Preoperative Grading of Rectal Cancer Using Radiomics Features
2022
Although preoperative biopsy of rectal cancer (RC) is an essential step for confirmation of diagnosis, it currently fails to provide prognostic information to the clinician beyond a rough estimation of tumour grade. In this study we used a risk classification to stratified patient in low-risk and high-risk patients in relation to the disease free survival and the overall survival using histopathological post-operative features. The purpose of this study was to evaluate if low-risk and high-risk RC can be distinguished using a CT-based radiomics model. We retrospectively reviewed the preoperative abdominal contrast-enhanced CT of 40 patients with RC. CT portal-venous phase was used for manua…
Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging
2021
Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardwar…
Radiomics Analyses of Schwannomas in the Head and Neck: A Preliminary Analysis
2022
The purpose of this preliminary study was to evaluate the differences in Magnetic Resonance Imaging (MRI)-based radiomics analysis between cerebellopontine angle neurinomas and schwannomas originating from other locations in the neck spaces. Twenty-six patients with available MRI exams and head and neck schwannomas were included. Lesions were manually segmented on the precontrast and postcontrast T1 sequences. The radiomics features were extracted by using PyRadiomics software, and a total of 120 radiomics features were obtained from each segmented tumor volume. An operator-independent hybrid descriptive‐inferential method was adopted for the selection and reduction of the features, while d…
Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples
2021
Abstract Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, often difficult to collect. We designed an operative pipeline for model training to exploit data already available to the scientific community. The aim of this work was to explore the capability of radiomic features in predicting tumor histology and stage in patients with non-small cell lung cancer (NSCLC). We analyzed the radiotherapy planning thoracic CT scans of a proprietary sample of 47 subjects (L-RT) and integrated this dataset with a publicly available set of 130 patients from the MAASTRO NSCLC collection (Lung1). We implemented intra- and inter-sample cross-valida…
Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics
2021
In healthcare industry 4.0, a big role is played by radiomics. Radiomics concerns the extraction and analysis of quantitative information not visible to the naked eye, even by expert operators, from biomedical images. Radiomics involves the management of digital images as data matrices, with the aim of extracting a number of morphological and predictive variables, named features, using automatic or semi-automatic methods. Multidisciplinary methods as machine learning and deep learning are fully involved in this field. However, the large number of features requires efficient and effective core methods for their selection, in order to avoid bias or misinterpretations problems. In this work, t…
Radiomics: A New Biomedical Workflow to Create a Predictive Model
2020
‘Radiomics’ is utilized to improve the prediction of patient overall survival and/or outcome. Target segmentation, feature extraction, feature selection, and classification model are the fundamental blocks of a radiomics workflow. Nevertheless, these blocks can be affected by several issues, i.e. high inter- and intra-observer variability. To overcome these issues obtaining reproducible results, we propose a novel radiomics workflow to identify a relevant prognostic model concerning a real clinical problem. In the specific, we propose an operator-independent segmentation system with the consequent automatic extraction of radiomics features, and a novel feature selection approach to create a…
Imaging standardisation in metastatic colorectal cancer: a joint EORTC-ESOI-ESGAR expert consensus recommendation
2022
Background: Treatment monitoring in metastatic colorectal cancer (mCRC) relies on imaging to evaluate the tumor burden. Response Evaluation Criteria in Solid Tumors (RECIST) provide a framework on reporting and interpretation of imaging findings yet offer no guidance on a standardized imaging protocol tailored to mCRC patients. Imaging protocol heterogeneity remains a challenge for the reproducibility of conventional imaging endpoints and is an obstacle for research on novel imaging endpoints. Patients and methods: Acknowledging the recently highlighted potential of radiomics and artificial intelligence (AI) tools as decision support for patient care in mCRC, a multidisciplinary, internatio…
Radiomics Analysis of Brain [18F]FDG PET/CT to Predict Alzheimer’s Disease in Patients with Amyloid PET Positivity: A Preliminary Report on the Appli…
2022
Background: Early in-vivo diagnosis of Alzheimer’s disease (AD) is crucial for accurate management of patients, in particular, to select subjects with mild cognitive impairment (MCI) that may evolve into AD, and to define other types of MCI non-AD patients. The application of artificial intelligence to functional brain [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography(CT) aiming to increase diagnostic accuracy in the diagnosis of AD is still undetermined. In this field, we propose a radiomics analysis on advanced imaging segmentation method Statistical Parametric Mapping (SPM)-based completed with a Machine-Learning (ML) application to predict the diagnosi…
Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning …
2021
Objective: The aim of this study was (1) to investigate the application of texture analysis of choline PET/CT images in prostate cancer (PCa) patients and (2) to propose a machine-learning radiomics model able to select PET features predictive of disease progression in PCa patients with a same high-risk class at restaging. Material and methods: Ninety-four high-risk PCa patients who underwent restaging Cho-PET/CT were analyzed. Follow-up data were recorded for a minimum of 13 months after the PET/CT scan. PET images were imported in LIFEx toolbox to extract 51 features from each lesion. A statistical system based on correlation matrix and point-biserial-correlation coefficient has been impl…
Chest CT in COVID-19 Pneumonia: Potentials and Limitations of Radiomics and Artificial Intelligence
2021
SARS-CoV-2 epidemics has resulted in an unprecedented global health crisis causing a high number of deaths with pneumonia being the most common manifestation. Chest CT is the best imaging modality to identify pulmonary involvement, but unfortunately there are no pathognomonic features for COVID-19 pneumonia, since many other infectious and non-infectious diseases may cause similar alterations. The adoption of artificial intelligence in biomedical imaging has the potential to revolutionize the identification, management, and the patient’s outcome. If adequately validated, it could be used as a support with predictive and prognostic purposes in symptomatic patients but also as a screening tes…